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Unimolecular Reaction Dynamics
• Lindemann theory of collision-activated unimolecular 

reactions
• strong collision assumption for activation/deactivation
àgas-kinetic collision rate 𝑧!" for deactivation const. 𝑘#$:		
𝑧!" = 𝜎!" 𝑢!" 	𝜌!𝜌" = 𝑘#$ A M

• applied steady-state approximation for A∗	

• overall rate: 𝑅 = 𝑘'() A = 𝑘* A∗ = +!+" A M
+#! M ,+"

• considered high- & low-pressure limits

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products

𝑘#$ = 𝜎!" 𝑢!"

𝑘'() =
𝑘$𝑘* M

𝑘#$ M + 𝑘*
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Unimolecular Reaction Dynamics
• Lindemann theory of collision-activated unimolecular 

reactions
• at low pressure becomes 1st order in collision partner, linear 

increase of 𝑘'() 	with pressure (activation step is rate-liming)
• at high pressure becomes effectively 0th order, constant with 

pressure (pre-equilibrium, reaction rate-limiting)
• 𝑘'() =

+$
$, %$

%!M

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products

𝑘#$ = 𝜎!" 𝑢!"

𝑘'() =
𝑘$𝑘* M

𝑘#$ M + 𝑘*
• realized that using 𝑘! from 

simply reactive-hard-spheres 
model underestimated 
experimental results…
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Unimolecular Reaction Dynamics
• Lindemann-Hinshelwood theory, to account for internal
   energy stored in vibrations that can drive reaction as well,
   to increase 𝑘$ for better agreement with experiment
• approximated the ratio

𝑘$
𝑘#$

≈
𝐴./.&
𝐴01023

• only okay for pre-equilibrium approximation, i.e., at high 
pressures (very drastic approximation for low ones!)
• allowed us to apply statistical thermodynamics to calculate 

assuming a thermal distribution

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products
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Unimolecular Reaction Dynamics
• Lindemann-Hinshelwood theory, to account for internal
   energy stored in vibrations that can drive reaction as well,
   to increase 𝑘$ for better agreement with experiment

• derived from first principles:  𝑘$ =
+#!
4#$ !

.&
+'6

4#$
𝑒#

(&
%')

• assuming 𝑠 classical harmonic oscillators, using stat. TD and DoS
• approximated solution, only valid for small molecules: 
    𝑠 small if overall atom number 𝑁 small, as 𝑠 = 3𝑁 − 6   (or 5)
• and for activation energy 𝐸7 being relatively large (typical)
• and assuming quasi-equilibrium, i.e. high-pressure limit
• then, we could drop all terms in binomial expansion for 𝑗 > 0

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products
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Unimolecular Reaction Dynamics
• Lindemann-Hinshelwood theory, to account for internal
   energy stored in vibrations that can drive reaction as well,
   to increase 𝑘$ for better agreement with experiment

• derived from first principles:  𝑘$ =
+#!
4#$ !

.&
+'6

4#$
𝑒#

(&
%')

à compared to just reactive-hard-spheres model, we now know 
that the reaction rate depends on the internal energy as well, taking 
into account the vibrational energy stored, which can contribute to 
successful activation and reaction, accounted for in the equation 
through 𝑠 

A + M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗	
𝑘%
	→	 products
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• What’s left?  Calculating 𝑘*!
• How will reaction rate 𝑘* depend on energy 

stored in activated molecule A∗	?
• it will increase with increasing energy, stored in 

vibrations (oscillators have a total energy 𝐸)
• How exactly?
   Consider e.g. a dissociation reaction
• specifically the energy stored in the vibrational 

mode, along which dissociation occurs, will 
matter: critical mode
• need energy larger than threshold in exactly this 

mode for dissociation to occur!
• Morse potential of oscillator 

A +M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗
𝑘$
	→	 products

8𝐻𝐶 − 𝐶𝐻8
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• need energy larger than threshold in exactly this 
mode for dissociation to occur!
• Morse potential: need enough energy to 

dissociate
A +M	

𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗
𝑘$
	→	 products

8𝐻𝐶 − 𝐶𝐻8

à once I add 
more energy into 
this mode than 
the dissociation 
energy, this  
Morse oscillator 
will fall apart and 
dissociation 
occurs
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• So, the more energy the system has, the higher 
the probability of having enough energy in the 
specific, critical mode for the reaction to take 
place
• therefore, we expect 𝑘* to increase with energy, 

so 𝑘* = 𝑘 𝐸
•  How will reaction rate then depend on the 

number of oscillators 𝑠 ?
• It will decrease with number of oscillators, 

because the more there are, that I distribute my 
total energy 𝐸 over, the less likely we are to 
exceed the threshold energy in the relevant 
critical mode for the reaction to occur

A +M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗
𝑘$
	→	 products

8𝐻𝐶 − 𝐶𝐻8
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• statistical theory (1927-28) that considers that activation rate & 
reaction rate depend both on energy of activated molecule:

6.2 Rice-Ramsperger-Kassel (RRK) Theory

A +M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗
𝑘$
	→	 products

A + M	
𝑑𝑘!
	→	 A∗ 𝐸, 𝐸 + 𝑑𝐸 +M

	A∗ 𝐸, 𝐸 + 𝑑𝐸 +M	
𝑘#!
	→	 A + M

	A∗ 𝐸, 𝐸 + 𝑑𝐸
𝑘(𝐸)
	→	 products

first reaction cannot be described fully by 𝑘! anymore, but only by a fraction of that total rate, so 𝑑𝑘! 
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• If I activate to an infinitesimally small energy interval between 𝐸 and 
𝐸 + 𝑑𝐸 , the rate will not anymore follow the total rate constant of 
this activation reaction (would be 𝑘$), but only by a small fraction of 
the total rate, characterized by 𝑑𝑘$
• with strong collision assumption, we still keep 𝑘#$ unchanged

A +M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗
𝑘$
	→	 products

A + M	
𝑑𝑘!
	→	 A∗ 𝐸, 𝐸 + 𝑑𝐸 +M

	A∗ 𝐸, 𝐸 + 𝑑𝐸 +M	
𝑘#!
	→	 A + M

	A∗ 𝐸, 𝐸 + 𝑑𝐸
𝑘(𝐸)
	→	 products
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• So now depending on the specific energy to activate to, we will have a 
different rate constant for the first activation step, and thus for the 
final forward reaction step as well
• How do those two rates depend on energy for a given temperature?

A +M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗
𝑘$
	→	 products

A + M	
𝑑𝑘!
	→	 A∗ 𝐸, 𝐸 + 𝑑𝐸 +M

	A∗ 𝐸, 𝐸 + 𝑑𝐸 +M	
𝑘#!
	→	 A + M

	A∗ 𝐸, 𝐸 + 𝑑𝐸
𝑘(𝐸)
	→	 products
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• How do those two rates depend on energy for a given temperature?
• Rate of activation will decrease for higher energy values, as less and less 

likely to reach the very highest levels of energy of that activated molecule
• Reaction rate will increase with energy, as more and more likely to 

exceed activation energy in critical mode to react

A +M	
𝑘!
	→	 A∗+M

A∗ +M	
𝑘#!
	→	 A + M

A∗
𝑘$
	→	 products

A + M	
𝑑𝑘!
	→	 A∗ 𝐸, 𝐸 + 𝑑𝐸 +M

	A∗ 𝐸, 𝐸 + 𝑑𝐸 +M	
𝑘#!
	→	 A + M

	A∗ 𝐸, 𝐸 + 𝑑𝐸
𝑘(𝐸)
	→	 products
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• We thus arrive at a differential unimolecular rate constant:

𝑑𝑘'() =
𝑘(𝐸) 𝑑𝑘$𝑘#$
1 + 𝑘 𝐸

𝑘#$ M
• just like Lindemann-Hinshelwood theory
  from before, except that we only
  consider a small fraction of the rate
  relevant to a given energy increment

A +M	
𝑑𝑘!
	→	 A∗ 𝐸, 𝐸 + 𝑑𝐸 +M

	A∗ 𝐸, 𝐸 + 𝑑𝐸 +M	
𝑘#!
	→	 A + M

	A∗ 𝐸, 𝐸 + 𝑑𝐸
𝑘(𝐸)
	→	 products
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• We thus arrive at a differential unimolecular rate constant:

𝑑𝑘'() =
𝑘(𝐸) 𝑑𝑘$𝑘#$
1 + 𝑘 𝐸

𝑘#$ M

• we call 𝜔 the collision frequency (a rate) of reactant: 𝜔 = 𝑘#$[𝑀]

• probability for a molecule to have a certain energy is:   :+!
+#!

= 𝑃(𝐸)𝑑𝐸 

• so we can rewrite: 

𝑑𝑘'() = 𝜔
𝑘(𝐸)𝑃(𝐸)𝑑𝐸
𝑘 𝐸 + 𝜔

• Integration yields 

𝑘'() = 𝜔 E
.&

;
𝑘(𝐸)𝑃(𝐸)𝑑𝐸
𝑘 𝐸 + 𝜔

So how can we 
get 𝑘(𝐸)???
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• RRK theory assumes (1) activated molecules of a specific energy 𝐸 > 𝐸7 
form a microcanonical ensemble, i.e.:
• all possible states of this energy are populated with equal probability
• A statistical thermodynamics assumption which is in reality not true, 

why?
• not enough time for energy to always flow from one collision-excited 

mode into all the others, before molecule reacts/collides again
• not equally likely for energy to flow from one mode into any other, as 

not all modes will be coupled (equally strongly), so instead 
preferential flow from certain modes into others

• we still will make this drastic approximation here
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• RRK theory also assumes (2) molecules with energy 𝐸7 + 𝐸′  in the 
critical mode will react (dissociate/isomerize) within one vibrational 
period of duration 1/𝜈 
• 𝜈 is eigenfrequency of that critical oscillator
• i.e., these molecules will have a dissociation (reaction) rate of 𝝂 
• RRK theory also assumes (3) even after some molecules have 

dissociated, the rest will continue to form a microcanonical 
ensemble. This 3rd assumption relies on
• (3a) the ergodic hypothesis, i.e., we assume energy can freely 

redistribute between all vibrational degrees of freedom
• (3b) fast IVR (intramolecular vibrational energy redistribution), on 

timescales faster than that of the reaction, i.e., fast energy exchange 
between all modes (strongly coupled)
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• With all these assumptions we can then rather straightforwardly say:
• The classical RRK rate constant 𝑘 𝐸  is simply the dissociation rate 

of that critical mode (using assumption (2)) times the probability of 
having enough energy in that critical mode:

𝑘 𝐸 = 𝜈	 J 𝑃 𝐸, 𝐸4 ≥ 𝐸7
• So let’s calculate the probability for a molecule to have energy
    𝐸4 ≥ 𝐸7 in the critical mode: 𝑃 𝐸, 𝐸4 ≥ 𝐸7
• we use our previously derived expressions for the density of states of 

a set of 𝑠 classical oscillators
• Why can we just use the DoS of our levels for calculating the 

probability, and do not need to use a Boltzmann term here?
• Because it’s a microcanonical ensemble: there is no temperature 

and thus spread of energies, but only one energy we consider here
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• Why can we just use the DoS of our levels for calculating the 
probability, and do not need to use a Boltzmann term?
• Because it’s a microcanonical ensemble: there is no temperature 

and thus spread of energies, but only one energy we consider here
• If I ask for one specific energy value “how probable is a given state?”, I 

just have to know the degeneracy of this state and divide it by the 
total number of states
• So we can use the DoS here, which we derived before J
• The probability we look for is thus the DoS of the subset of states with 

sufficient energy in the critical mode divided by the total DoS:

𝑘 𝐸 = 𝜈	 J 𝑃 𝐸, 𝐸4 ≥ 𝐸7 = 𝜈 J
𝑁 𝐸, 𝐸4 ≥ 𝐸7

𝑁 𝐸
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• For the total DoS of 𝑠 oscillators of total energy 𝐸 we had derived: 

𝑁 𝐸 =
𝐸4#$

(𝑠 − 1)!∏)<$
4 ℎ𝜈)

• For the fraction of this total DoS with an energy of 𝐸4 = 𝐸7 + 𝐸′ in the 
critical mode, 𝑁 𝐸, 𝐸4 ≥ 𝐸7 , we multiply the DoS of 𝑠 − 1 oscillators at a 
total energy of 𝐸 − 𝐸7 − 𝐸′ with the DoS of the critical oscillator at energy 
𝐸4 = 𝐸7 + 𝐸′ and then integrate over all energies 𝐸′:

𝑁 𝐸, 𝐸4 ≥ 𝐸7 = E
7

.#.&

𝑁 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔	𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑠 𝑑𝐸′ ⋅ 𝑁 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟

DoS of critical oscillator with
energy 𝐸4 = 𝐸7 + 𝐸= ≥ 𝐸7

Sum of states of 𝑠 − 1 oscillators
with remaining energy of 𝐸 − 𝐸4
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𝑁 𝐸, 𝐸4 ≥ 𝐸7 = E
7

.#.&

𝑁 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔	𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑠 𝑑𝐸′ ⋅ 𝑁 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙	𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟

	 𝑁 𝐸, 𝐸4 ≥ 𝐸7 = E
7

.#.&
(𝐸 − 𝐸7 − 𝐸=)4#*

(𝑠 − 2)!∏)<$
4#$ ℎ𝜈)

𝑑𝐸′ ⋅
1
ℎ𝜈4

• energy of at least 𝐸7 is reserved for the critical oscillator for reaction
• So we need to integrate the DoS over all energies from 0 (i.e., all energy is in 

the critical oscillator and nothing left for remaining ones) to 𝐸 − 𝐸7 (which 
would mean just the bare minimum amount of energy, 𝐸7, is in the critical 
oscillator, and all the rest is in the remaining ones)
• This way we get the DoS of the system having energy 𝐸, and of that, at least 

energy 𝐸7 in the critical oscillator

= 𝐸 − 𝐸4
𝑁 𝐸  reduced by 1, which is 
reserved for critical oscillator
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	 𝑁 𝐸, 𝐸4 ≥ 𝐸7 = E
7

.#.&
(𝐸 − 𝐸7 − 𝐸=)4#*

(𝑠 − 2)!∏)<$
4#$ ℎ𝜈)

⋅
1
ℎ𝜈4

𝑑𝐸′

	 𝑁 𝐸, 𝐸4 ≥ 𝐸7 =
(𝐸 − 𝐸7)4#$

(𝑠 − 1)!∏)<$
4 ℎ𝜈)

• Now we can insert this result into our previous expression for the 
probability 𝑃 𝐸, 𝐸4 ≥ 𝐸7 , and get for the fraction of molecules that have 
an energy of 𝐸4 ≥ 𝐸7 in the critical mode:

 𝑃 𝐸, 𝐸! ≥ 𝐸" = # $,$!&$"
# $

= $'$"
$

(')

which simplifies to
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• Now we can insert this result into our previous expression for the 
probability 𝑃 𝐸, 𝐸4 ≥ 𝐸7 , and get for the fraction of molecules that have 
an energy of 𝐸4 ≥ 𝐸7 in the critical mode:

 𝑃 𝐸, 𝐸! ≥ 𝐸" = # $,$!&$"
# $

= $'$"
$

(')

• finally, we can insert this result into our desired expression for the RRK 
reaction rate constant:

𝑘 𝐸 = 𝜈	 J 𝑃 𝐸, 𝐸4 ≥ 𝐸7

𝑘 𝐸 = 𝜈	 J
𝐸 − 𝐸7
𝐸

>#$
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• RRK reaction rate constant:  𝑘 𝐸 = 𝜈	 J .#.&
.

>#$

• How does it look plotted against energy?

• For diatomic molecule?
à 𝑘4<$ 𝐸 = 𝜈
àall energy in critical mode
àrate becomes as fast as
     possibly can be

• Quite nice that we only need to
   know 𝜈, 𝑠 and 𝐸7 for this J E/E0

k(
E)

/ν

s = 1

s = 3

s = 10

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
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• RRK reaction rate constant:  𝑘 𝐸 = 𝜈	 J .#.&
.

>#$

• Limitations of this RRK model arise from classical (as opposed to QM) 
treatment of vibrations
• our pre-factor of the RRK model here (Arrhenius-like) is 𝜈, so the 

eigenfrequency of the vibration of the critical molecular mode
• say such a vibration takes 10-100 fs (i.e. 1/𝜈) in reality
• in the experiment, the measured pre-factor is larger than just 𝜈 taken 

straight from the molecular vibration, i.e., larger than 1014 s-1 
• other short-coming is that we treat all here statistical (due to pre-

equilibrium assumption), which in reality it mostly is not (esp. not at 
lower pressures)
• RRKM theory improves this as a microcanonical transition-state theory
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• RRK theory: developed by 1927 by  Rice & Ramsperger, and completed 
in 1928 by Kassel
• RRKM theory improves this as a microcanonical transition-state theory:
• In 1952, Rudolph Marcus (Nobel Prize 1992) developed RRK theory 

further, by taking into account the transition-state theory (TST) 
developed by Eyring in 1935
• RRKM builds on TST using potential energy surfaces
• assumes potential energy surface does not have any
   "bottlenecks" for which certain vibrational modes 
   may be trapped for longer than the average time
   of the reaction; also accounts for rotations

  A∗	
𝑘(𝐸)
	→	 products                     A∗	

𝑘(𝐸)
	→	 A‡ → products

Rudi Marcus, Caltech



Chapter 8
Transition State Theory
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•  

8.1 Motion on the potential energy surface


