Kinetics & Dynamics of Chemical Reactions

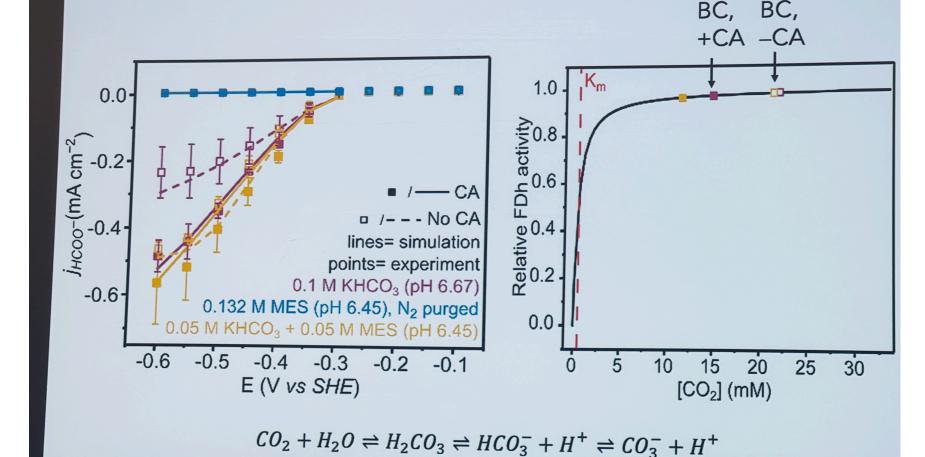
Course CH-310

Prof. Sascha Feldmann

Kinetics in everyday science life an example from the MatSus Fall Meeting 2024

Effect of CO₂/bicarbonate Buffer on FDH activity

FDH with and without carbonic anhydrase co-immobilised on mesoporous ITO



Cobb et al., Nature Chem., 2022, 14, 417–24

Unimolecular Reaction Dynamics

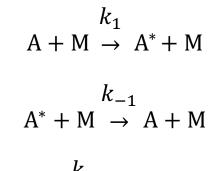
- Lindemann theory of collision-activated unimolecular reactions
 - strong collision assumption for activation/deactivation
 - \rightarrow gas-kinetic collision rate $z_{\rm AM}$ for deactivation const. k_{-1} :

$$z_{\rm AM} = \sigma_{\rm AM} \langle u_{\rm AM} \rangle \rho_{\rm A} \rho_{\rm M} = k_{-1} [{\rm A}][{\rm M}]$$

- applied steady-state approximation for A*
- overall rate: $R = k_{uni}[A] = k_2[A^*] = \frac{k_1 k_2[A][M]}{k_{-1}[M] + k_2}$

$$k_{uni} = \frac{\sigma_{\text{AM}} \langle u_{\text{AM}} \rangle}{k_{uni}}$$
$$k_{uni} = \frac{k_1 k_2 [\text{M}]}{k_{-1} [\text{M}] + k_2}$$

• considered high- & low-pressure limits



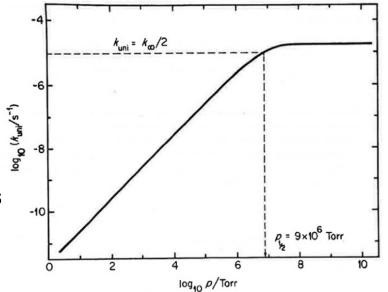
 $A^* \rightarrow products$

Unimolecular Reaction Dynamics

- Lindemann theory of collision-activated unimolecular reactions
 - at low pressure becomes 1st order in collision partner, linear increase of k_{uni} with pressure (activation step is rate-liming)
 - at high pressure becomes effectively 0th order, constant with pressure (pre-equilibrium, reaction rate-limiting)

$$\bullet \ k_{uni} = \frac{k_{\infty}}{1 + \frac{k_{\infty}}{k_1[M]}}$$

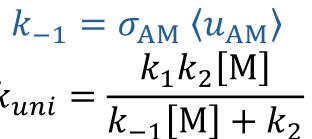
• realized that using k_1 from simply reactive-hard-spheres model underestimated experimental results...



$$A + M \xrightarrow{k_1} A^* + M$$

$$A^* + M \xrightarrow{k_{-1}} A + M$$

 k_2 $A^* \rightarrow \text{products}$



Unimolecular Reaction Dynamics

- Lindemann-Hinshelwood theory, to account for *internal* energy stored in vibrations that can drive reaction as well, to increase k_1 for better agreement with experiment
 - approximated the ratio

$$\frac{k_1}{k_{-1}} \approx \frac{\left[A_{E > E_0}\right]}{\left[A_{total}\right]}$$

- only okay for pre-equilibrium approximation, *i.e.*, at *high* pressures (very drastic approximation for low ones!)
- allowed us to apply statistical thermodynamics to calculate assuming a thermal distribution

$$A + M \xrightarrow{k_1} A^* + M$$

$$k \xrightarrow{t_1}$$

$$A^* + M \xrightarrow{k_{-1}} A + M$$

$$k_2$$
 $A^* \rightarrow \text{products}$

Unimolecular Reaction Dynamics

- Lindemann-Hinshelwood theory, to account for *internal* energy stored in vibrations that can drive reaction as well, to increase k_1 for better agreement with experiment
 - derived from first principles: $k_1 = \frac{k_{-1}}{(s-1)!} \left(\frac{E_0}{k_B T}\right)^{s-1} e^{-\frac{E_0}{k_B T}}$
 - assuming s classical harmonic oscillators, using stat. TD and DoS
 - approximated solution, only valid for small molecules: s small if overall atom number N small, as s=3N-6 (or 5)
 - and for activation energy E_0 being relatively large (typical)
 - and assuming quasi-equilibrium, i.e. high-pressure limit
 - then, we could drop all terms in binomial expansion for j > 0

 k_1 $A + M \rightarrow A^* + M$ k_{-1} $A^* + M \rightarrow A + M$

 k_2 $A^* \rightarrow \text{products}$

Unimolecular Reaction Dynamics

- Lindemann-Hinshelwood theory, to account for *internal* energy stored in vibrations that can drive reaction as well, to increase k_1 for better agreement with experiment
 - derived from first principles: $k_1 = \frac{k_{-1}}{(s-1)!} \left(\frac{E_0}{k_B T}\right)^{s-1} e^{-\frac{E_0}{k_B T}}$

 $\begin{array}{c} k_1 \\ A+M \xrightarrow{} A^*+M \\ \\ A^*+M \xrightarrow{} A+M \\ \\ k_2 \\ A^* \xrightarrow{} \text{products} \end{array}$

→ compared to just reactive-hard-spheres model, we now know that the reaction rate depends on the internal energy as well, taking into account the vibrational energy stored, which can contribute to successful activation and reaction, accounted for in the equation through s

- What's left? Calculating k_2 !
- How will reaction rate k_2 depend on energy stored in activated molecule A*?
- it will increase with increasing energy, stored in vibrations (oscillators have a total energy E)
- How exactly?
 Consider e.g. a dissociation reaction
- specifically the energy stored in the vibrational mode, along which dissociation occurs, will matter: *critical mode*
- need energy larger than threshold in exactly this mode for dissociation to occur!
- Morse potential of oscillator

$$\begin{array}{c} k_1 \\ A + M \rightarrow A^* + M \end{array}$$

$$A^* + M \rightarrow A + M$$

$$\frac{k_2}{A^*}$$
 A* \rightarrow products

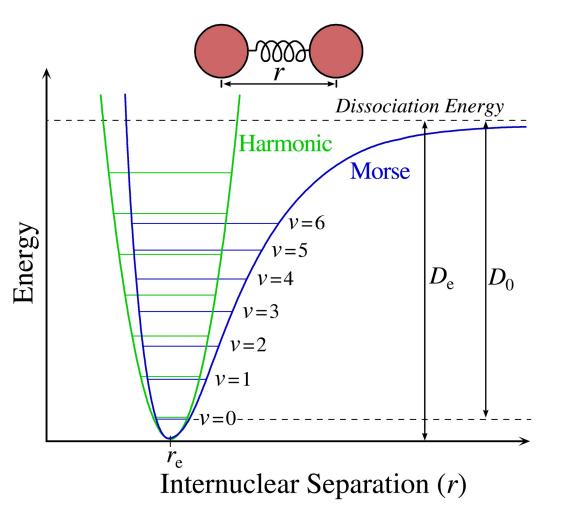
$$\frac{\longleftarrow}{_3HC} - \frac{\longrightarrow}{CH_3}$$

 need energy larger than threshold in exactly this mode for dissociation to occur!

Morse potential: need enough energy to

dissociate

→ once I add
more energy into
this mode than
the dissociation
energy, this
Morse oscillator
will fall apart and
dissociation
occurs



$$\begin{array}{c} k_1 \\ A + M \rightarrow A^* + M \end{array}$$

$$A^* + M \rightarrow A + M$$

$$\frac{k_2}{A^*}$$
 A* \rightarrow products

$$\frac{}{_{3}HC} - \overline{CH_{3}}$$

- So, the more energy the system has, the higher the probability of having enough energy in the specific, critical mode for the reaction to take place
- therefore, we expect k_2 to *increase* with energy, so $k_2=k(E)$
- How will reaction rate then depend on the number of oscillators s?
- It will *decrease* with number of oscillators, because the more there are, that I distribute my total energy *E* over, the *less likely* we are to exceed the threshold energy in the relevant critical mode for the reaction to occur

$$k_{1}$$

$$A + M \rightarrow A^{*} + M$$

$$k_{-1}$$

$$A^{*} + M \rightarrow A + M$$

$$k_{2}$$

$$A^{*} \rightarrow \text{products}$$

$$HC - CH_{3}$$

6.2 Rice-Ramsperger-Kassel (RRK) Theory

 statistical theory (1927-28) that considers that activation rate & reaction rate depend both on energy of activated molecule:

$$k_1$$
 $A + M \rightarrow A^* + M$
 $A + M \rightarrow A^*(E, E + dE) + M$
 $A^* + M \rightarrow A + M$
 $A^*(E, E + dE) + M \rightarrow A + M$
 k_2
 $A^* \rightarrow \text{products}$
 $k(E)$
 $A^*(E, E + dE) \rightarrow \text{products}$

first reaction cannot be described fully by k_1 anymore, but only by a fraction of that total rate, so dk_1

- If I activate to an infinitesimally small energy interval between E and E+dE, the rate will not anymore follow the total rate constant of this activation reaction (would be k_1), but only by a small fraction of the total rate, characterized by dk_1
- ullet with strong collision assumption, we still keep k_{-1} unchanged

$$k_1$$
 $A + M \rightarrow A^* + M$
 $A + M \rightarrow A^*(E, E + dE) + M$
 $A^* + M \rightarrow A + M$
 $A^*(E, E + dE) + M \rightarrow A + M$
 k_2
 $A^* \rightarrow \text{products}$
 $k(E)$
 $A^*(E, E + dE) \rightarrow \text{products}$

- So now depending on the specific energy to activate to, we will have a different rate constant for the first activation step, and thus for the final forward reaction step as well
- How do those two rates depend on energy for a given temperature?

$$k_1$$
 $A + M \rightarrow A^* + M$
 $A + M \rightarrow A^*(E, E + dE) + M$
 $A^* + M \rightarrow A + M$
 $A^*(E, E + dE) + M \rightarrow A + M$
 k_2
 $A^* \rightarrow \text{products}$
 $k(E)$
 $A^*(E, E + dE) \rightarrow \text{products}$

- How do those two rates depend on energy for a given temperature?
- Rate of activation will decrease for higher energy values, as less and less likely to reach the very highest levels of energy of that activated molecule
- Reaction rate will *increase* with energy, as more and more likely to exceed activation energy in critical mode to react

$$k_1$$
 $A + M \rightarrow A^* + M$
 $A + M \rightarrow A^*(E, E + dE) + M$
 $A^* + M \rightarrow A + M$
 $A^*(E, E + dE) + M \rightarrow A + M$
 k_2
 $A^* \rightarrow \text{products}$
 $k(E)$
 $A^*(E, E + dE) \rightarrow \text{products}$

• We thus arrive at a differential unimolecular rate constant:

$$dk_{uni} = \frac{k(E)\frac{dk_1}{k_{-1}}}{1 + \frac{k(E)}{k_{-1}[M]}}$$

• just like Lindemann-Hinshelwood theory from before, except that we only A + consider a small fraction of the rate relevant to a given energy increment

$$A + M \rightarrow A^*(E, E + dE) + M$$

$$A^*(E, E + dE) + M \rightarrow A + M$$

$$k(E)$$

$$A^*(E, E + dE) \rightarrow \text{products}$$

• We thus arrive at a differential unimolecular rate constant:

$$dk_{uni} = \frac{k(E)\frac{dk_1}{k_{-1}}}{1 + \frac{k(E)}{k_{-1}[M]}}$$

- we call ω the collision frequency (a rate) of reactant: $\omega = k_{-1}[M]$
- probability for a molecule to have a certain energy is: $\frac{dk_1}{k_{-1}} = P(E)dE$
- so we can rewrite:

$$dk_{uni} = \omega \frac{k(E)P(E)dE}{k(E) + \omega}$$

Integration yields

$$k_{uni} = \omega \int_{E_0}^{\infty} \frac{k(E)P(E)dE}{k(E) + \omega}$$
 So how can we get $k(E)$???

- RRK theory assumes (1) activated molecules of a specific energy $E>E_0$ form a *microcanonical ensemble*, *i.e.*:
- all possible states of this energy are populated with equal probability
- A statistical thermodynamics assumption which is in reality not true, why?
 - not enough time for energy to always flow from one collision-excited mode into all the others, before molecule reacts/collides again
 - not equally likely for energy to flow from one mode into any other, as not all modes will be coupled (equally strongly), so instead preferential flow from certain modes into others
- we still will make this drastic approximation here

- RRK theory also assumes (2) molecules with energy E_0+E' in the critical mode will react (dissociate/isomerize) within one vibrational period of duration $1/\nu$
- ν is eigenfrequency of that critical oscillator
- i.e., these molecules will have a dissociation (reaction) rate of ν
- RRK theory also assumes (3) even after some molecules have dissociated, the rest will *continue* to form a microcanonical ensemble. This 3rd assumption relies on
- (3a) the *ergodic hypothesis*, *i.e.*, we assume energy can freely redistribute between all vibrational degrees of freedom
- **(3b)** *fast IVR* (intramolecular vibrational energy redistribution), on timescales faster than that of the reaction, *i.e.*, fast energy exchange between all modes (strongly coupled)

- With all these assumptions we can then rather straightforwardly say:
- The classical RRK rate constant k(E) is simply the dissociation rate of that critical mode (using assumption (2)) times the probability of having enough energy in that critical mode:

$$k(E) = \nu \cdot P(E, E_S \ge E_0)$$

- So let's calculate the probability for a molecule to have energy $E_s \ge E_0$ in the critical mode: $P(E, E_s \ge E_0)$
- we use our previously derived expressions for the density of states of a set of s classical oscillators
- Why can we just use the DoS of our levels for calculating the probability, and do *not* need to use a Boltzmann term here?
- Because it's a microcanonical ensemble: there is no temperature and thus spread of energies, but only one energy we consider here

- Why can we just use the DoS of our levels for calculating the probability, and do not need to use a Boltzmann term?
- Because it's a microcanonical ensemble: there is no temperature and thus spread of energies, but only one energy we consider here
- If I ask for one specific energy value "how probable is a given state?", I
 just have to know the degeneracy of this state and divide it by the
 total number of states
- So we can use the DoS here, which we derived before ©
- The probability we look for is thus the DoS of the subset of states with sufficient energy in the critical mode divided by the total DoS:

$$k(E) = \nu \cdot P(E, E_S \ge E_0) = \nu \cdot \frac{N(E, E_S \ge E_0)}{N(E)}$$

• For the total DoS of s oscillators of total energy E we had derived:

$$N(E) = \frac{E^{s-1}}{(s-1)! \prod_{i=1}^{s} h\nu_i}$$

• For the fraction of this total DoS with an energy of $E_s = E_0 + E'$ in the critical mode, $N(E, E_s \ge E_0)$, we multiply the DoS of s-1 oscillators at a total energy of $E-E_0-E'$ with the DoS of the critical oscillator at energy $E_s = E_0 + E'$ and then integrate over all energies E':

$$N(E, E_s \ge E_0) = \int_0^{E-E_0} N(remaining oscillators) dE' \cdot N(critical oscillator)$$

Sum of states of s-1 oscillators with remaining energy of $E-E_s$

DoS of critical oscillator with energy $E_S = E_0 + E' \ge E_0$

$$N(E, E_S \geq E_0) = \int_0^{E-E_0} N(remaining \ oscillators) dE' \cdot N(critical \ oscillator)$$

$$N(E, E_S \geq E_0) = \int_0^{E-E_0} \frac{(E-E_0-E')^{s-2}}{(s-2)! \prod_{i=1}^{s-1} hv_i} dE' \cdot \frac{1}{hv_s}$$

- energy of at least E_0 is reserved for the critical oscillator for reaction
- So we need to integrate the DoS over all energies from 0 (i.e., all energy is in the critical oscillator and nothing left for remaining ones) to $E-E_0$ (which would mean just the bare minimum amount of energy, E_0 , is in the critical oscillator, and all the rest is in the remaining ones)
- This way we get the DoS of the system having energy E, and of that, <u>at least</u> energy E_0 in the critical oscillator

$$N(E, E_s \ge E_0) = \int_0^{E-E_0} \frac{(E - E_0 - E')^{s-2}}{(s-2)! \prod_{i=1}^{s-1} h\nu_i} \cdot \frac{1}{h\nu_s} dE'$$
 which simplifies to

$$N(E, E_s \ge E_0) = \frac{(E - E_0)^{s-1}}{(s-1)! \prod_{i=1}^{s} h\nu_i}$$

• Now we can insert this result into our previous expression for the probability $P(E, E_s \ge E_0)$, and get for the fraction of molecules that have an energy of $E_s \ge E_0$ in the critical mode:

$$P(E, E_S \ge E_0) = \frac{N(E, E_S \ge E_0)}{N(E)} = \left(\frac{E - E_0}{E}\right)^{S-1}$$

• Now we can insert this result into our previous expression for the probability $P(E, E_s \ge E_0)$, and get for the fraction of molecules that have an energy of $E_s \ge E_0$ in the critical mode:

$$P(E, E_S \ge E_0) = \frac{N(E, E_S \ge E_0)}{N(E)} = \left(\frac{E - E_0}{E}\right)^{S - 1}$$

• finally, we can insert this result into our desired expression for the RRK reaction rate constant:

$$k(E) = \nu \cdot P(E, E_s \ge E_0)$$

$$k(E) = \nu \cdot \left(\frac{E - E_0}{E}\right)^{s-1}$$

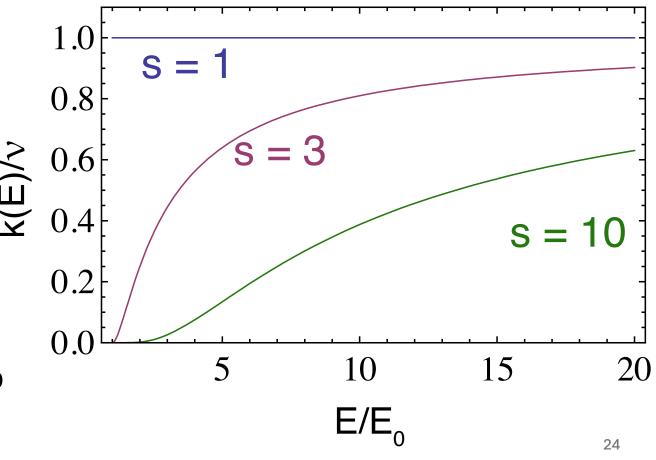
• RRK reaction rate constant:

$$k(E) = \nu \cdot \left(\frac{E - E_0}{E}\right)^{s-1}$$

How does it look plotted against energy?

- For diatomic molecule?
- $\rightarrow k_{s=1}(E) = \nu$
- →all energy in critical mode
- rate becomes as fast as possibly can be

• Quite nice that we only need to know ν , s and E_0 for this \odot



• RRK reaction rate constant:

$$k(E) = \nu \cdot \left(\frac{E - E_0}{E}\right)^{s - 1}$$

- Limitations of this RRK model arise from classical (as opposed to QM) treatment of vibrations
- our pre-factor of the RRK model here (Arrhenius-like) is ν , so the eigenfrequency of the vibration of the critical molecular mode
- say such a vibration takes 10-100 fs (i.e. $1/\nu$) in reality
- in the experiment, the measured pre-factor is larger than just ν taken straight from the molecular vibration, *i.e.*, larger than 10^{14} s⁻¹
- other short-coming is that we treat all here statistical (due to preequilibrium assumption), which in reality it mostly is not (esp. not at lower pressures)
- RRKM theory improves this as a microcanonical transition-state theory

- RRK theory: developed by 1927 by Rice & Ramsperger, and completed in 1928 by Kassel
- RRKM theory improves this as a microcanonical transition-state theory:
- In 1952, Rudolph Marcus (Nobel Prize 1992) developed RRK theory further, by taking into account the transition-state theory (TST) developed by Eyring in 1935
- RRKM builds on TST using potential energy surfaces
- assumes potential energy surface does not have any "bottlenecks" for which certain vibrational modes may be trapped for longer than the average time of the reaction; also accounts for rotations

k(E) $A^* \rightarrow \text{products}$ $A^* \rightarrow A^{\ddagger} \rightarrow \text{products}$

Rudi Marcus, Caltech

Chapter 8

Transition State Theory

8.1 Motion on the potential energy surface

•