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Kinetics in
everyday
science life -
an example
from the
MatSus Fall
Meeting 2024
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Recap from last session ey

: : : A"+M > A+ M
Unimolecular Reaction Dynamics -

: . : : k
* Lindemann theory of collision-activated unimolecular A* > products

reactions
* strong collision assumption for activation/deactivation
—>gas-kinetic collision rate z,y for deactivation const. k_:
Zam = Oam (Uam) papm = k—1 [A][M]

| . . , k_l — 0AM <uAM>
» applied steady-state approximation for A kik,[M]

Ky =
. overall rate: R = ky,.;[A] = k,[A"] = ’;{"[l[\?]]ﬂ/” uni = 1T M ¥ &,

* considered high- & low-pressure limits



k1
A+M > A"+ M

Recap from last session

Unimolecular Reaction Dynamics

k_q
A+M - A+ M

ks

* Lindemann theory of collision-activated unimolecular A* S products
reactions
e at low pressure becomes 18t order in collision partner, linear
increase of k,,,; with pressure (activation step is rate-liming)
* at high pressure becomes effectively 0" order, constant with
pressure (pre-equilibrium, reaction rate-limiting)
- Koo k_1 = oam (Uam)
uni 1+k1k[01§)/[] k= kik,[M]
k_1[M] + k,

* realized that using k, from
simply reactive-hard-spheres
model underestimated
experimental results...
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Recap from last session ey

: : : A"+M > A+ M
Unimolecular Reaction Dynamics -

: . . k
* Lindemann-Hinshelwood theory, to account for internal A" - products

energy stored in vibrations that can drive reaction as well,

to increase k4 for better agreement with experiment
* approximated the ratio
ﬁ ~ [AE>EO]
k—l [Atotal]
* only okay for pre-equilibrium approximation, /.e., at high
pressures (very drastic approximation for low ones!)

* allowed us to apply statistical thermodynamics to calculate
assuming a thermal distribution




Recap from last session ey

: : : A"+M > A+ M
Unimolecular Reaction Dynamics -

: . . k
* Lindemann-Hinshelwood theory, to account for internal A" - products

energy stored in vibrations that can drive reaction as well,
to increase k4 for better agreement with experiment

* derived from first principles:

* assuming s classical harmonic oscillators, using stat. TD and DoS
* approximated solution, only valid for small molecules:
s small if overall atom number N small,ass = 3N — 6 (orb5)
* and for activation energy E, being relatively large (typical)
* and assuming quasi-equilibrium, i.e. high-pressure limit
* then, we could drop all terms in binomial expansion forj > 0



k1
A+M > A"+ M

Recap from last session -
Unimolecular Reaction Dynamics AEM = A+M
* Lindemann-Hinshelwood theory, to account for internal A iz products
energy stored in vibrations that can drive reaction as well,
to increase k4 for better agreement with experiment

* derived from first principles:

- compared to just reactive-hard-spheres model, we now know
that the reaction rate depends on the internal energy as well, taking
Into account the vibrational energy stored, which can contribute to
successful activation and reaction, accounted for in the equation

through s



* What’s left? Calculating k!

 How will reaction rate k, depend on energy

stored in activated molecule A* ? A+M -> A"+ M

* it will increase with increasing energy, stored in k_4
vibrations (oscillators have a total energy E) A*+M - A+ M

* How exactly?

Consider e.g. a dissociation reaction k;

* specifically the energy stored in the vibrational A" — products

mode, along which dissociation occurs, will
matter: critical mode .HC — CH,

* need energy larger than threshold in exactly this
mode for dissociation to occur!

* Morse potential of oscillator



* need energy larger than threshold in exactly this

mode for dissociation to occur! k1

* Morse potential: need enough energy to A+M - A+ M

dissociate
k_1

A+M - A+ M

9 once | add ) | bissociation Energ___
more energy into

this mode than

the dissociation >
energy, this S
Morse oscillator M
will fall apart and
dissociation

OCCUrs

k2
A" — products

3HC — CH3

Y

Internuclear Separation (7)



* S0, the more energy the system has, the higher
the probability of having enough energy in the
specific, critical mode for the reactiontotake A+ M - A"+ M
place

* therefore, we expect k, to increase with energy, k1
so k;, = k(E) A+M > A+ M

* How will reaction rate then depend on the I
2

number of oscillators s ? .
A" — products

* [t will decrease with number of oscillators,
because the more there are, that | distribute my —
total energy E over, the less likely we are to sHC — CHs
exceed the threshold energy in the relevant
critical mode for the reaction to occur



6.2 Rice-Ramsperger-Kassel (RRK) Theory

 statistical theory (1927-28) that considers that activation rate &
reaction rate depend both on energy of activated molecule:

A+M 5> A"+ M A+M - A*(E,E+dE)+M
k_4 k_4
AA+M > A+M =mm) A(EE+dE)+M > A+ M

k, k(E)
A* — products A*(E,E + dE) — products

first reaction cannot be described fully by £, anymore, but only by a fraction of that total rate, so
10



* If | activate to an infinitesimally small energy interval between E and
E + dE , the rate will not anymore follow the total rate constant of
this activation reaction (would be k), but only by a small fraction of
the total rate, characterized by dk,

* with strong collision assumption, we still keep k_; unchanged

A+M 5> A"+ M A+M - A*(E,E+dE)+ M

k—l k—l
A+M > A+M =y AEE+dE)+M > A+ M

k, k(E)
A* — products A*(E,E + dE) — products

11



* SO0 now depending on the specific energy to activate to, we will have a
different rate constant for the first activation step, and thus for the
final forward reaction step as well

* How do those two rates depend on energy for a given temperature?

A+M 5> A"+ M A+M - A*(E,E+dE)+ M

k—l k—l
A+M > A+M =y AEE+dE)+M > A+ M

k, k(E)
A* — products A*(E,E + dE) — products

12



* How do those two rates depend on energy for a given temperature?

* Rate of activation will decrease for higher energy values, as less and less
likely to reach the very highest levels of energy of that activated molecule

* Reaction rate will increase with energy, as more and more likely to
exceed activation energy in critical mode to react

A+M 5> A"+ M A+M - A*(E,E+dE)+ M

k—l k—l
A+M > A+M =y AEE+dE)+M > A+ M

k, k(E)
A* — products A*(E,E + dE) — products

13



 We thus arrive at a differential unimolecular rate constant:
k(E)
k_q
k(E)
k_1[M]
* just like Lindemann-Hinshelwood theory

from before, except that we only A+M o> AY(E,E+dE)+ M
consider a small fraction of the rate

Akyni =

1+

relevant to a given energy increment k_q
A"(E,E+dE)+M - A+ M

k(E)
A*(E,E + dE) — products

14



e We thus arrive at a differential unimolecular rate constant:
dk
k(E) 7
—1

k(E)
fe_1[M]

dkyn; =

1+

* we call w the collision frequency (a rate) of reactant: w = k_,|M|

+ probability for a molecule to have a certain energy is: ~— = P(E)dE
-1
* SO We can rewrite:
k(E)P(E)dE
dkuni - W
k(E)+ w

* Integration yields oo

E k(E)P(E)dE So how can we

uni = k(E) + w get k(E)???

Ey



* RRK theory assumes (1) activated molecules of a specificenergy £ > E,
form a microcanonical ensemble, i.e.:

* all possible states of this energy are populated with equal probability
* A statistical thermodynamics assumption which is in reality not true,
why?
* not enough time for energy to always flow from one collision-excited
mode into all the others, before molecule reacts/collides again

* not equally likely for energy to flow from one mode into any other, as
not all modes will be coupled (equally strongly), so instead
preferential flow from certain modes into others

* we still will make this drastic approximation here

16



* RRK theory also assumes (2) molecules with energy E, + E’ in the
critical mode will react (dissociate/isomerize) within one vibrational
period of duration 1 /v

* v is eigenfrequency of that critical oscillator
* j.e.,these molecules will have a dissociation (reaction) rate of v

* RRK theory also assumes (3) even after some molecules have
dissociated, the rest will continue to form a microcanonical

ensemble. This 3@ assumption relies on

* (3a) the ergodic hypothesis, i.e., we assume energy can freely
redistribute between all vibrational degrees of freedom

* (3b) fast IVR (intramolecular vibrational energy redistribution), on
timescales faster than that of the reaction, i.e., fast energy exchange
between all modes (strongly coupled)

17



* With all these assumptions we can then rather straightforwardly say:

* The classical RRK rate constant k(E) is simply the dissociation rate
of that critical mode (using assumption (2)) times the probability of
having enough energy in that critical mode:

k(E)=v -P(E,E, = E,)
* So let’s calculate the probability for a molecule to have energy
E. > E, in the critical mode: P(E,E; = E,)

* we use our previously derived expressions for the density of states of
a set of s classical oscillators

* Why can we just use the DoS of our levels for calculating the
probability, and do not need to use a Boltzmann term here?

* Because it’s a microcanonical ensemble: there is no temperature
and thus spread of energies, but only one energy we consider here



* Why can we just use the DoS of our levels for calculating the
probability, and do not need to use a Boltzmann term?

* Because it’s a microcanonical ensemble: there is no temperature
and thus spread of energies, but only one energy we consider here

* If | ask for one specific energy value “how probable is a given state?”, |
just have to know the degeneracy of this state and divide it by the
total number of states

e So we can use the DoS here, which we derived before ©

* The probability we look for is thus the DoS of the subset of states with
sufficient energy in the critical mode divided by the total DoS:

N(E,E; = E,)
N(E)

k(E)=v -P(E,E. = E)) = v -

19



* For the total DoS of s oscillators of total energy E we had derived:

s—1
N(E) =
(S — 1)' ?=1 th'

* For the fraction of this total DoS with an energy of £, = E, + E’ in the
critical mode, N(E,E, = E,;), we multiply the DoS of s — 1 oscillators at a
total energy of E — E, — E’ with the DoS of the critical oscillator at energy

E.=E,+E' an%tgen integrate over all energies E:
— L0

N(E,E, = E,) = f N (remaining oscillators)dE’ - N(critical oscillator)

0 J | }
f !

Sum of states of s — 1 oscillators
with remaining energy of E — E

DoS of critical oscillator with
energy E. = Ey+ E' = E,

20



E—E,
N(E,E, = E,) = f N (remaining oscillators)dE' - N(critical oscillator)

0
N(E) reduced by 1, which is

=FE —E / reserved for critical oscillator

A

FE b g pryse2
(F—Fo—EY2

(s— 2B hv;  hvs

N(E,E, = E,) =

* energy of at least E is reserved for the critical oscillator for reaction

* SO0 we need to integrate the DoS over all energies from O (i.e., all energy isin
the critical oscillator and nothing left for remaining ones) to £ — E, (which
would mean just the bare minimum amount of energy, Ej, is in the critical
oscillator, and all the rest is in the remaining ones)

* This way we get the DoS of the system having energy E, and of that, at least
energy Ej in the critical oscillator .




E-E

"(E-Ey—E)¥2 1
N(E,E; 2 Ep) =

(s — 2 - hy; A,

l=

dE’  which simplifies to

(E — Eo)*™!
(S — 1)' ?=1 th'

N(E,E, = E,) =

* Now we can insert this result into our previous expression for the
probability P(E, E; = E,), and get for the fraction of molecules that have
an energy of E. = E, in the critical mode:

N(E,Es=E,) E—E,\5~1
P(E, Es 2 Fg) = =757 = ( ) 0)
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* Now we can insert this result into our previous expression for the
probability P(E,E, = E,), and get for the fraction of molecules that have
an energy of E. = E, in the critical mode:

N(E,Es=E,) E—E,\5~1
P(E, Es 2 Fg) = 570 = ( ) 0)

* finally, we can insert this result into our desired expression for the RRK

reaction rate constant:
k(E)=v -P(E,E, = E,)

E _ EO)S—l

k(E)=v-( .

23



_pns—1
* RRK reaction rate constant: k(E)=v - (E EEO)

* How does it look plotted against energy?

* For diatomic molecule? Loy
> koy (B) = v 08}
Sall energy in criticalmode < 0.6}
—rate becomes as fast as % ().45—

possibly can be 021

0.0

* Quite nice that we only need to

know v, s and E, for this ©



L s—1
* RRK reaction rate constant: k(E)=v - (E EEO)

* [ imitations of this RRK model arise from classical (as opposed to QM)
treatment of vibrations

* our pre-factor of the RRK model here (Arrhenius-like) is v, so the
eigenfrequency of the vibration of the critical molecular mode

 say such a vibration takes 10-100 fs (i.e. 1/v) in reality

* in the experiment, the measured pre-factor is larger than just v taken
straight from the molecular vibration, i.e., larger than 104 s-

* other short-coming is that we treat all here statistical (due to pre-
equilibrium assumption), which in reality it mostly is not (esp. not at
lower pressures)

* RRKM theory improves this as a microcanonical transition-state theory



* RRK theory: developed by 1927 by Rice & Ramsperger, and completed
In 1928 by Kassel

* RRKM theory improves this as a microcanonical transition-state theory:

* In 1952, Rudolph Marcus (Nobel Prize 1992) developed RRK theory

further, by taking into account the transition-state theory (TST)
developed by Eyring in 1935

* RRKM builds on TST using potential energy surfaces
* assumes potential energy surface does not have any
"bottlenecks" for which certain vibrational modes

may be trapped for longer than the average time

of the reaction; also accounts for rotations Rudi Marcus, Caltech
k(E) k(E)
A" — products mmp A" - A¥ - products

26



Chapter 8

Transition State Theory



8.1 Motion on the potential energy surface



